3.202 \(\int \frac {2+3 x^2}{x^2 (3+5 x^2+x^4)^{3/2}} \, dx\)

Optimal. Leaf size=309 \[ \frac {19 x \left (2 x^2+\sqrt {13}+5\right )}{234 \sqrt {x^4+5 x^2+3}}-\frac {19 \sqrt {x^4+5 x^2+3}}{117 x}-\frac {8 x^2+7}{39 x \sqrt {x^4+5 x^2+3}}-\frac {4 \sqrt {\frac {2}{3 \left (5+\sqrt {13}\right )}} \sqrt {\frac {\left (5-\sqrt {13}\right ) x^2+6}{\left (5+\sqrt {13}\right ) x^2+6}} \left (\left (5+\sqrt {13}\right ) x^2+6\right ) F\left (\tan ^{-1}\left (\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} x\right )|\frac {1}{6} \left (-13+5 \sqrt {13}\right )\right )}{39 \sqrt {x^4+5 x^2+3}}-\frac {19 \sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} \sqrt {\frac {\left (5-\sqrt {13}\right ) x^2+6}{\left (5+\sqrt {13}\right ) x^2+6}} \left (\left (5+\sqrt {13}\right ) x^2+6\right ) E\left (\tan ^{-1}\left (\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} x\right )|\frac {1}{6} \left (-13+5 \sqrt {13}\right )\right )}{234 \sqrt {x^4+5 x^2+3}} \]

[Out]

1/39*(-8*x^2-7)/x/(x^4+5*x^2+3)^(1/2)+19/234*x*(5+2*x^2+13^(1/2))/(x^4+5*x^2+3)^(1/2)-19/117*(x^4+5*x^2+3)^(1/
2)/x-4/117*(1/(36+x^2*(30+6*13^(1/2))))^(1/2)*(36+x^2*(30+6*13^(1/2)))^(1/2)*EllipticF(x*(30+6*13^(1/2))^(1/2)
/(36+x^2*(30+6*13^(1/2)))^(1/2),1/6*(-78+30*13^(1/2))^(1/2))*(6+x^2*(5+13^(1/2)))*6^(1/2)/(5+13^(1/2))^(1/2)*(
(6+x^2*(5-13^(1/2)))/(6+x^2*(5+13^(1/2))))^(1/2)/(x^4+5*x^2+3)^(1/2)-19/1404*(1/(36+x^2*(30+6*13^(1/2))))^(1/2
)*(36+x^2*(30+6*13^(1/2)))^(1/2)*EllipticE(x*(30+6*13^(1/2))^(1/2)/(36+x^2*(30+6*13^(1/2)))^(1/2),1/6*(-78+30*
13^(1/2))^(1/2))*(6+x^2*(5+13^(1/2)))*(30+6*13^(1/2))^(1/2)*((6+x^2*(5-13^(1/2)))/(6+x^2*(5+13^(1/2))))^(1/2)/
(x^4+5*x^2+3)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 309, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {1277, 1281, 1189, 1099, 1135} \[ \frac {19 x \left (2 x^2+\sqrt {13}+5\right )}{234 \sqrt {x^4+5 x^2+3}}-\frac {19 \sqrt {x^4+5 x^2+3}}{117 x}-\frac {8 x^2+7}{39 x \sqrt {x^4+5 x^2+3}}-\frac {4 \sqrt {\frac {2}{3 \left (5+\sqrt {13}\right )}} \sqrt {\frac {\left (5-\sqrt {13}\right ) x^2+6}{\left (5+\sqrt {13}\right ) x^2+6}} \left (\left (5+\sqrt {13}\right ) x^2+6\right ) F\left (\tan ^{-1}\left (\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} x\right )|\frac {1}{6} \left (-13+5 \sqrt {13}\right )\right )}{39 \sqrt {x^4+5 x^2+3}}-\frac {19 \sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} \sqrt {\frac {\left (5-\sqrt {13}\right ) x^2+6}{\left (5+\sqrt {13}\right ) x^2+6}} \left (\left (5+\sqrt {13}\right ) x^2+6\right ) E\left (\tan ^{-1}\left (\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} x\right )|\frac {1}{6} \left (-13+5 \sqrt {13}\right )\right )}{234 \sqrt {x^4+5 x^2+3}} \]

Antiderivative was successfully verified.

[In]

Int[(2 + 3*x^2)/(x^2*(3 + 5*x^2 + x^4)^(3/2)),x]

[Out]

(19*x*(5 + Sqrt[13] + 2*x^2))/(234*Sqrt[3 + 5*x^2 + x^4]) - (7 + 8*x^2)/(39*x*Sqrt[3 + 5*x^2 + x^4]) - (19*Sqr
t[3 + 5*x^2 + x^4])/(117*x) - (19*Sqrt[(5 + Sqrt[13])/6]*Sqrt[(6 + (5 - Sqrt[13])*x^2)/(6 + (5 + Sqrt[13])*x^2
)]*(6 + (5 + Sqrt[13])*x^2)*EllipticE[ArcTan[Sqrt[(5 + Sqrt[13])/6]*x], (-13 + 5*Sqrt[13])/6])/(234*Sqrt[3 + 5
*x^2 + x^4]) - (4*Sqrt[2/(3*(5 + Sqrt[13]))]*Sqrt[(6 + (5 - Sqrt[13])*x^2)/(6 + (5 + Sqrt[13])*x^2)]*(6 + (5 +
 Sqrt[13])*x^2)*EllipticF[ArcTan[Sqrt[(5 + Sqrt[13])/6]*x], (-13 + 5*Sqrt[13])/6])/(39*Sqrt[3 + 5*x^2 + x^4])

Rule 1099

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[((2*a + (b +
q)*x^2)*Sqrt[(2*a + (b - q)*x^2)/(2*a + (b + q)*x^2)]*EllipticF[ArcTan[Rt[(b + q)/(2*a), 2]*x], (2*q)/(b + q)]
)/(2*a*Rt[(b + q)/(2*a), 2]*Sqrt[a + b*x^2 + c*x^4]), x] /; PosQ[(b + q)/a] &&  !(PosQ[(b - q)/a] && SimplerSq
rtQ[(b - q)/(2*a), (b + q)/(2*a)])] /; FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]

Rule 1135

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(x*(b +
q + 2*c*x^2))/(2*c*Sqrt[a + b*x^2 + c*x^4]), x] - Simp[(Rt[(b + q)/(2*a), 2]*(2*a + (b + q)*x^2)*Sqrt[(2*a + (
b - q)*x^2)/(2*a + (b + q)*x^2)]*EllipticE[ArcTan[Rt[(b + q)/(2*a), 2]*x], (2*q)/(b + q)])/(2*c*Sqrt[a + b*x^2
 + c*x^4]), x] /; PosQ[(b + q)/a] &&  !(PosQ[(b - q)/a] && SimplerSqrtQ[(b - q)/(2*a), (b + q)/(2*a)])] /; Fre
eQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]

Rule 1189

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}
, Dist[d, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] + Dist[e, Int[x^2/Sqrt[a + b*x^2 + c*x^4], x], x] /; PosQ[(b +
 q)/a] || PosQ[(b - q)/a]] /; FreeQ[{a, b, c, d, e}, x] && GtQ[b^2 - 4*a*c, 0]

Rule 1277

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> -Simp[((f
*x)^(m + 1)*(a + b*x^2 + c*x^4)^(p + 1)*(d*(b^2 - 2*a*c) - a*b*e + (b*d - 2*a*e)*c*x^2))/(2*a*f*(p + 1)*(b^2 -
 4*a*c)), x] + Dist[1/(2*a*(p + 1)*(b^2 - 4*a*c)), Int[(f*x)^m*(a + b*x^2 + c*x^4)^(p + 1)*Simp[d*(b^2*(m + 2*
(p + 1) + 1) - 2*a*c*(m + 4*(p + 1) + 1)) - a*b*e*(m + 1) + c*(m + 2*(2*p + 3) + 1)*(b*d - 2*a*e)*x^2, x], x],
 x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && IntegerQ[2*p] && (IntegerQ[p] |
| IntegerQ[m])

Rule 1281

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(d*(
f*x)^(m + 1)*(a + b*x^2 + c*x^4)^(p + 1))/(a*f*(m + 1)), x] + Dist[1/(a*f^2*(m + 1)), Int[(f*x)^(m + 2)*(a + b
*x^2 + c*x^4)^p*Simp[a*e*(m + 1) - b*d*(m + 2*p + 3) - c*d*(m + 4*p + 5)*x^2, x], x], x] /; FreeQ[{a, b, c, d,
 e, f, p}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[m, -1] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rubi steps

\begin {align*} \int \frac {2+3 x^2}{x^2 \left (3+5 x^2+x^4\right )^{3/2}} \, dx &=-\frac {7+8 x^2}{39 x \sqrt {3+5 x^2+x^4}}-\frac {1}{39} \int \frac {-19+8 x^2}{x^2 \sqrt {3+5 x^2+x^4}} \, dx\\ &=-\frac {7+8 x^2}{39 x \sqrt {3+5 x^2+x^4}}-\frac {19 \sqrt {3+5 x^2+x^4}}{117 x}+\frac {1}{117} \int \frac {-24+19 x^2}{\sqrt {3+5 x^2+x^4}} \, dx\\ &=-\frac {7+8 x^2}{39 x \sqrt {3+5 x^2+x^4}}-\frac {19 \sqrt {3+5 x^2+x^4}}{117 x}+\frac {19}{117} \int \frac {x^2}{\sqrt {3+5 x^2+x^4}} \, dx-\frac {8}{39} \int \frac {1}{\sqrt {3+5 x^2+x^4}} \, dx\\ &=\frac {19 x \left (5+\sqrt {13}+2 x^2\right )}{234 \sqrt {3+5 x^2+x^4}}-\frac {7+8 x^2}{39 x \sqrt {3+5 x^2+x^4}}-\frac {19 \sqrt {3+5 x^2+x^4}}{117 x}-\frac {19 \sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} \sqrt {\frac {6+\left (5-\sqrt {13}\right ) x^2}{6+\left (5+\sqrt {13}\right ) x^2}} \left (6+\left (5+\sqrt {13}\right ) x^2\right ) E\left (\tan ^{-1}\left (\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} x\right )|\frac {1}{6} \left (-13+5 \sqrt {13}\right )\right )}{234 \sqrt {3+5 x^2+x^4}}-\frac {4 \sqrt {\frac {2}{3 \left (5+\sqrt {13}\right )}} \sqrt {\frac {6+\left (5-\sqrt {13}\right ) x^2}{6+\left (5+\sqrt {13}\right ) x^2}} \left (6+\left (5+\sqrt {13}\right ) x^2\right ) F\left (\tan ^{-1}\left (\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} x\right )|\frac {1}{6} \left (-13+5 \sqrt {13}\right )\right )}{39 \sqrt {3+5 x^2+x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.27, size = 228, normalized size = 0.74 \[ \frac {-i \sqrt {2} \left (19 \sqrt {13}-143\right ) x \sqrt {\frac {-2 x^2+\sqrt {13}-5}{\sqrt {13}-5}} \sqrt {2 x^2+\sqrt {13}+5} F\left (i \sinh ^{-1}\left (\sqrt {\frac {2}{5+\sqrt {13}}} x\right )|\frac {19}{6}+\frac {5 \sqrt {13}}{6}\right )+19 i \sqrt {2} \left (\sqrt {13}-5\right ) x \sqrt {\frac {-2 x^2+\sqrt {13}-5}{\sqrt {13}-5}} \sqrt {2 x^2+\sqrt {13}+5} E\left (i \sinh ^{-1}\left (\sqrt {\frac {2}{5+\sqrt {13}}} x\right )|\frac {19}{6}+\frac {5 \sqrt {13}}{6}\right )-4 \left (19 x^4+119 x^2+78\right )}{468 x \sqrt {x^4+5 x^2+3}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(2 + 3*x^2)/(x^2*(3 + 5*x^2 + x^4)^(3/2)),x]

[Out]

(-4*(78 + 119*x^2 + 19*x^4) + (19*I)*Sqrt[2]*(-5 + Sqrt[13])*x*Sqrt[(-5 + Sqrt[13] - 2*x^2)/(-5 + Sqrt[13])]*S
qrt[5 + Sqrt[13] + 2*x^2]*EllipticE[I*ArcSinh[Sqrt[2/(5 + Sqrt[13])]*x], 19/6 + (5*Sqrt[13])/6] - I*Sqrt[2]*(-
143 + 19*Sqrt[13])*x*Sqrt[(-5 + Sqrt[13] - 2*x^2)/(-5 + Sqrt[13])]*Sqrt[5 + Sqrt[13] + 2*x^2]*EllipticF[I*ArcS
inh[Sqrt[2/(5 + Sqrt[13])]*x], 19/6 + (5*Sqrt[13])/6])/(468*x*Sqrt[3 + 5*x^2 + x^4])

________________________________________________________________________________________

fricas [F]  time = 0.78, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {x^{4} + 5 \, x^{2} + 3} {\left (3 \, x^{2} + 2\right )}}{x^{10} + 10 \, x^{8} + 31 \, x^{6} + 30 \, x^{4} + 9 \, x^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2+2)/x^2/(x^4+5*x^2+3)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(x^4 + 5*x^2 + 3)*(3*x^2 + 2)/(x^10 + 10*x^8 + 31*x^6 + 30*x^4 + 9*x^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {3 \, x^{2} + 2}{{\left (x^{4} + 5 \, x^{2} + 3\right )}^{\frac {3}{2}} x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2+2)/x^2/(x^4+5*x^2+3)^(3/2),x, algorithm="giac")

[Out]

integrate((3*x^2 + 2)/((x^4 + 5*x^2 + 3)^(3/2)*x^2), x)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 257, normalized size = 0.83 \[ -\frac {16 \sqrt {-\left (-\frac {5}{6}+\frac {\sqrt {13}}{6}\right ) x^{2}+1}\, \sqrt {-\left (-\frac {5}{6}-\frac {\sqrt {13}}{6}\right ) x^{2}+1}\, \EllipticF \left (\frac {\sqrt {-30+6 \sqrt {13}}\, x}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )}{13 \sqrt {-30+6 \sqrt {13}}\, \sqrt {x^{4}+5 x^{2}+3}}-\frac {2 \sqrt {x^{4}+5 x^{2}+3}}{9 x}-\frac {6 \left (-\frac {5}{78} x^{3}-\frac {19}{78} x \right )}{\sqrt {x^{4}+5 x^{2}+3}}-\frac {76 \sqrt {-\left (-\frac {5}{6}+\frac {\sqrt {13}}{6}\right ) x^{2}+1}\, \sqrt {-\left (-\frac {5}{6}-\frac {\sqrt {13}}{6}\right ) x^{2}+1}\, \left (-\EllipticE \left (\frac {\sqrt {-30+6 \sqrt {13}}\, x}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )+\EllipticF \left (\frac {\sqrt {-30+6 \sqrt {13}}\, x}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )\right )}{13 \sqrt {-30+6 \sqrt {13}}\, \sqrt {x^{4}+5 x^{2}+3}\, \left (\sqrt {13}+5\right )}-\frac {4 \left (\frac {19}{234} x^{3}+\frac {40}{117} x \right )}{\sqrt {x^{4}+5 x^{2}+3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3*x^2+2)/x^2/(x^4+5*x^2+3)^(3/2),x)

[Out]

-6*(-5/78*x^3-19/78*x)/(x^4+5*x^2+3)^(1/2)-16/13/(-30+6*13^(1/2))^(1/2)*(-(-5/6+1/6*13^(1/2))*x^2+1)^(1/2)*(-(
-5/6-1/6*13^(1/2))*x^2+1)^(1/2)/(x^4+5*x^2+3)^(1/2)*EllipticF(1/6*(-30+6*13^(1/2))^(1/2)*x,5/6*3^(1/2)+1/6*39^
(1/2))-76/13/(-30+6*13^(1/2))^(1/2)*(-(-5/6+1/6*13^(1/2))*x^2+1)^(1/2)*(-(-5/6-1/6*13^(1/2))*x^2+1)^(1/2)/(x^4
+5*x^2+3)^(1/2)/(13^(1/2)+5)*(EllipticF(1/6*(-30+6*13^(1/2))^(1/2)*x,5/6*3^(1/2)+1/6*39^(1/2))-EllipticE(1/6*(
-30+6*13^(1/2))^(1/2)*x,5/6*3^(1/2)+1/6*39^(1/2)))-2/9*(x^4+5*x^2+3)^(1/2)/x-4*(19/234*x^3+40/117*x)/(x^4+5*x^
2+3)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {3 \, x^{2} + 2}{{\left (x^{4} + 5 \, x^{2} + 3\right )}^{\frac {3}{2}} x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2+2)/x^2/(x^4+5*x^2+3)^(3/2),x, algorithm="maxima")

[Out]

integrate((3*x^2 + 2)/((x^4 + 5*x^2 + 3)^(3/2)*x^2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {3\,x^2+2}{x^2\,{\left (x^4+5\,x^2+3\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3*x^2 + 2)/(x^2*(5*x^2 + x^4 + 3)^(3/2)),x)

[Out]

int((3*x^2 + 2)/(x^2*(5*x^2 + x^4 + 3)^(3/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {3 x^{2} + 2}{x^{2} \left (x^{4} + 5 x^{2} + 3\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x**2+2)/x**2/(x**4+5*x**2+3)**(3/2),x)

[Out]

Integral((3*x**2 + 2)/(x**2*(x**4 + 5*x**2 + 3)**(3/2)), x)

________________________________________________________________________________________